SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Biogeochemical Response of Selected STA Flow-ways to Different Flow Scenarios

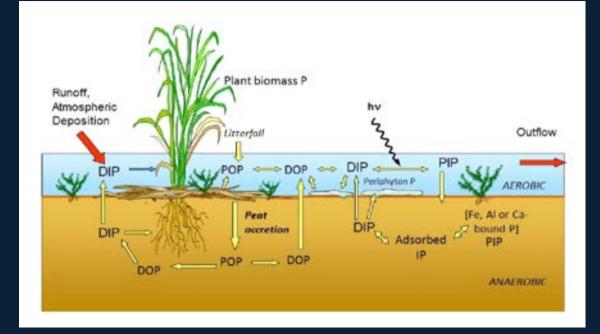
12th International Symposium on Biogeochemistry of Wetlands April 23-26, 2018

> Odi Villapando¹, Jill King¹, Rupesh Bhomia² and Paul Julian² ¹South Florida Water Management District ² University of Florida-WBL

Restoration Strategies for Clean Water for the Everglades

Flow-Dependent Responses

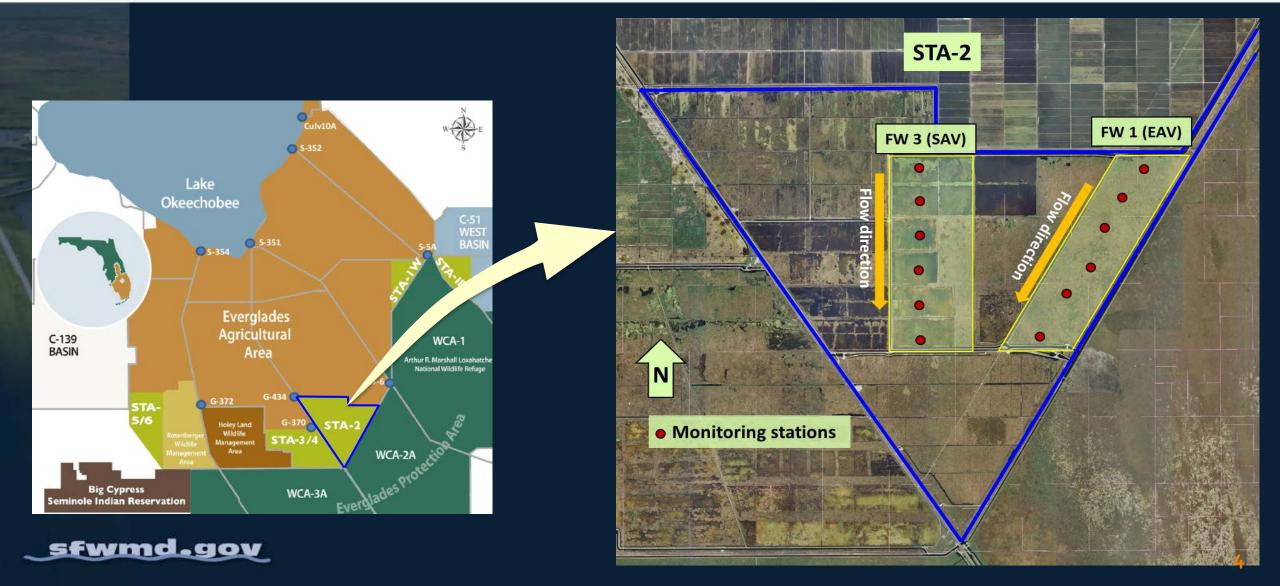
 Particulate settling and entrainment
Microbial enzyme activities
Diffusive and net P fluxes
Inflow to outflow WQ assessments



Study Objectives

Evaluate changes in water column P concentrations and speciation along the flow direction under varying hydraulic conditions

Determine biogeochemical factors and processes influencing responses, particularly those related to P retention and cycling along the flow-way



SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Study Locations

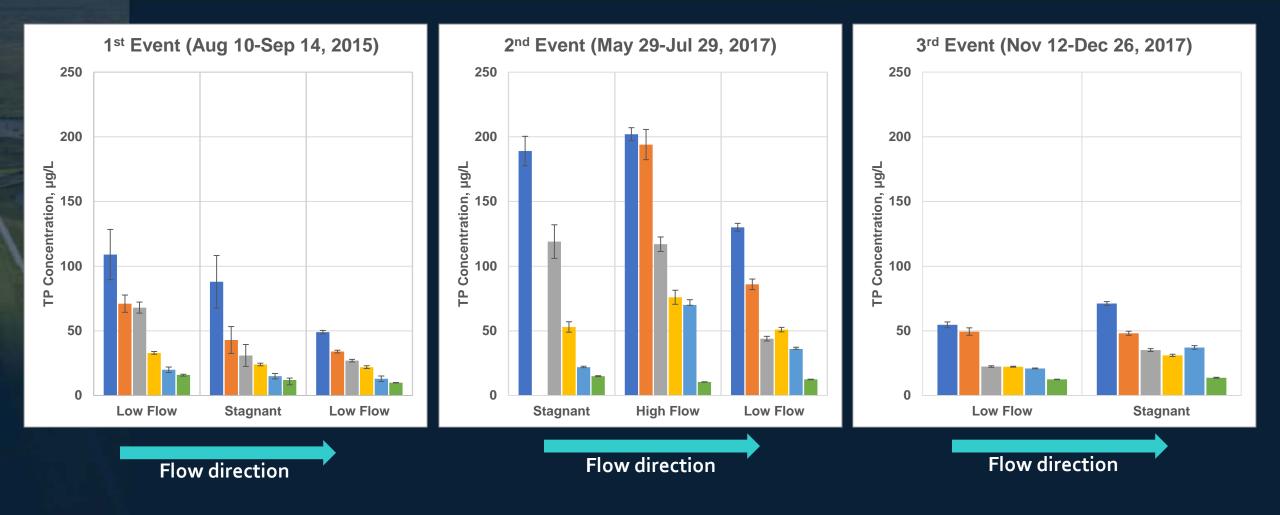
Data Collection

	Method	Parameters	Frequency
	Autosampler	Total phosphorus (TP)	Every 4 hours
		Total nitrogen (TN), Total organic carbon (TOC)	Daily composite
	Grab	TP, Soluble reactive P, Total dissolved P, Dissolved organic C, TN, Calcium, Magnesium, Potassium, Sodium, Iron, Sulfate Chloride, Alkalinity, Color, Total suspended solids, Hardness, Chlorophyll	Weekly
	Field	pH, Dissolved oxygen, Specific conductance, Temperature	Every 30 minutes

Flow Events – STA-2 FW 1 (EAV)

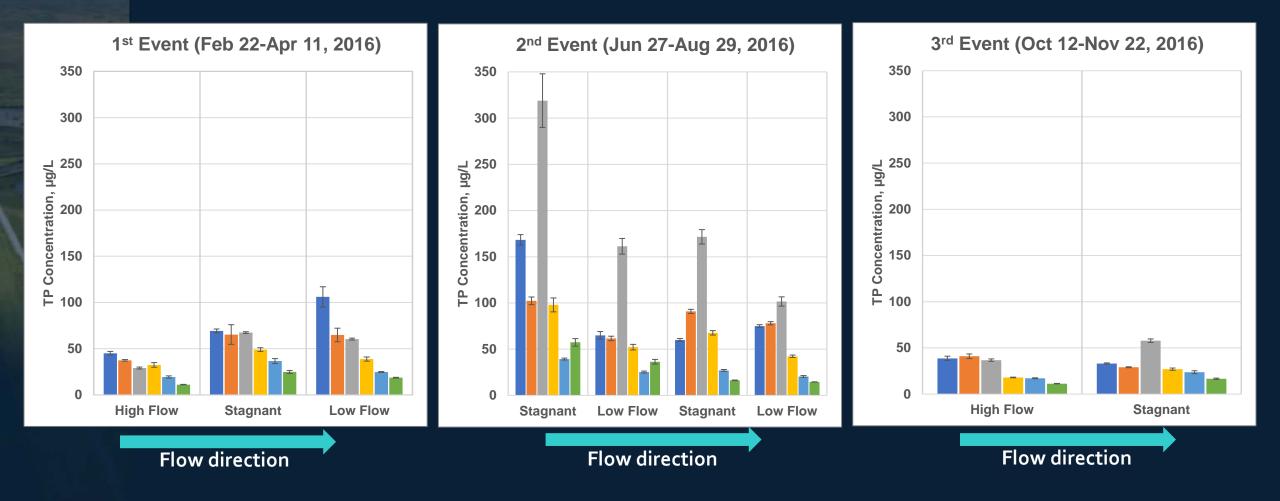
Flow Phase	Phase Period	Mean Flow* (cfs)	Mean HLR (cm/d)	Mean PLR (mg/m ² /d)	Mean Water Depth (ft)
1 st Flow Event (August 10 – September 14, 2015) - 35 days					
Low Flow	8/10 - 8/16	25 (33)	0.80 (1.08)	0.8 (1.1)	1.43 (0.20)
Stagnant	8/17 – 8/31	0	0	0	1.48 (0.04)
Low Flow	9/1 - 9/14	32 (11)	1.05 (0.36)	0.8 (0.3)	1.67 (0.08)
2 nd Flow Event (May 29 – July 29, 2017) – 42 days					
Stagnant	5/29 – 6/4	0	0	0	1.22 (0.03)
High Flow	6/5 – 6/26	317 (147)	10.41 (4.82)	20.1 (10.2)	2.51 (0.34)
Low Flow	6/27 – 7/29	7 (0.01)	0.22 (0.91)	0.3 (1.3)	1.53 (0.11)
3 rd Flow Event (November 12 – December 26, 2017) - 47 days					
Low Flow	11/12 — 11/27	102 (49)	3.35 (1.61)	0.9 (0.4)	2.14 (0.06)
No Flow	11/28 – 12/26	0	0	0	1.41 (0.20)

*Flow Categories: Low: 1-150 cfs; Moderate: 150-300 cfs; High: >300 cfs; No flow: stagnant


Numbers in parentheses are ± standard deviation

Flow Events – STA-2 FW 3 (SAV)

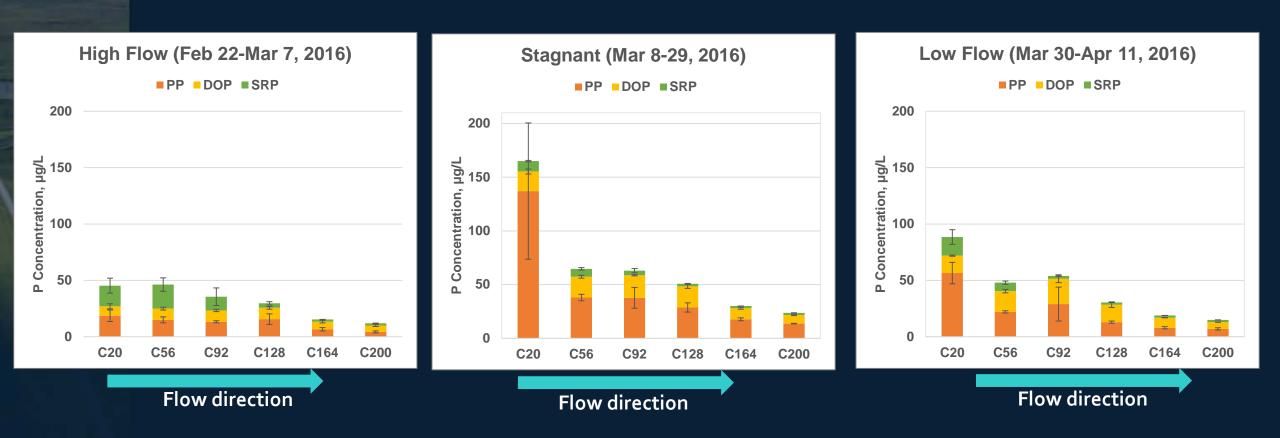
Flow Phase	Phase Period	Mean Flow* (cfs)	Mean HLR (cm/d)	Mean PLR (mg/m²/d)	Water Depth (ft)
1 st Flow Event (February 22 – April 11, 2016) - 50 days					
High Flow	2/22 – 3/7	325 (60)	8.55 (1.58)	3.7 (1.3)	1.96 (0.04)
Stagnant	3/8 – 3/29	0	0	0	1.91 (0.06)
Low Flow	3/30 - 4/11	55 (111)	1.45 (2.91)	1.0 (2.0)	1.60 (0.21)
2 nd Flow Event (June 27– August 29, 2016) – 64 days					
Stagnant	6/27 – 7/2	0	0	0	1.46 (0.05)
Low Flow	7/3 – 7/24	132 (33)	3.48 (0.87)	1.6 (0.7)	2.03 (0.18)
Stagnant	7/25 – 8/8	0	0	0	1.93 (0.07)
Low Flow	8/9 – 8/29	120 (86)	3.15 (2.26)	2.3 (1.6)	2.00 (0.07)
3 rd Flow Event (October 12 – November 22, 2016) - 49 days					
High Flow	10/12 – 11/3	301 (51)	7.90 (1.34)	5.9 (2.1)	2.46 (0.14)
Stagnant	11/4 - 11/22	0	0	0	2.32 (0.10)
Numbers in parentheses are ± standard deviation					


7

Mean TP Concentrations- STA-2 FW 1 (EAV)

Mean TP Concentrations- STA-2 FW 3 (SAV)

sfwmd.gov


P Speciation–STA-2 FW 1 (EAV)

PP – particulate P; DOP- dissolved organic P; SRP- soluble reactive P

sfwmd.gov

P Speciation – STA-2 FW 3 (SAV)

PP – particulate P; DOP- dissolved organic P; SRP- soluble reactive P

sfwmd.gov

Correlation of TP with Key Water Quality Parameters

Correlating Parameter	STA-2 FW 1 (EAV) (n=64)ª	STA-2 FW 3 (SAV) (n=72)
рН	-0.277*b	0.148 ^{ns}
Dissolved oxygen	-0.401**	0.163 ^{ns}
Temperature	0.138 ^{ns}	0.258*
Alkalinity	0.218*	0.232*
Aluminum	0.083 ^{ns}	0.442*
Calcium	0.242*	0.184*
Chlorophyll a	0.399**	0.759**
Iron	0.652**	0.438**
Total nitrogen	0.461**	0.502**
Total suspended solids	0.269*	0.757**

a. n= sample size

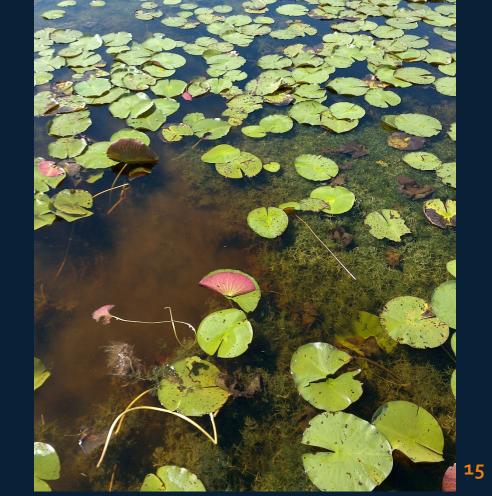
b. Spearman's rank correlation ;*- significant at p<0.05; **-significant at p<0.001; ns – not significant

Summary of Findings

Average TP concentration reduction higher for FW1 than for FW3. More PP was produced under stagnant condition following a period of high flow but not after low flow (FW₃) SRP accounted for majority of the reduction in FW1 while PP accounted for most of the reduction in FW3 Residual P comprised mainly of PP and DOP (both FWs) PP and DOP concentrations much higher in FW3 than in FW1 > TP showed significant correlations with key water quality parameters (both FWs)

What remains unknown

> Sources of PP under stagnant condition Actual composition of PP and DOP at the outflow water > Origin (sources of P) detected at the outflow structures Management of DOP and PP at the lower reaches of the treatment trains



Supplementary Research Efforts

Identification and quantification of organic P forms in the water column and soils of the STAs
Use of biomarkers to determine sources and fate of particulate organic matter in the STAs
Photolytic degradation of DOM

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Thank you!

Restoration Strategies for Clean Water for the Everglades